If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4c^2-20c-7=0
a = -4; b = -20; c = -7;
Δ = b2-4ac
Δ = -202-4·(-4)·(-7)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-12\sqrt{2}}{2*-4}=\frac{20-12\sqrt{2}}{-8} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+12\sqrt{2}}{2*-4}=\frac{20+12\sqrt{2}}{-8} $
| x=(((12-2-(0.2*(x+2))-(12/11))*10)/9 | | 4c^2-20c-7=0 | | x=((12-2-(0.2*(x+2))-(12/11))*10)/9 | | X2+11x-60=0 | | t/5-1=2 | | x=12-2-(0.2*(x+2))-(12/11))*10)/9 | | x=12-2-(0.2(x+2))-(12/11))*10)/9 | | -k^2-19k+20=-4k^2 | | x/441=3.7 | | p/3+7=12 | | 4/3(12a+6)=24 | | (2x-6)/3+(8x-2)/5=18 | | 1.50x+4=33.96 | | (x-2)(x^2-2x+4)=0 | | 1x/2=1x/4+5/2 | | 1.50x-4=33.96 | | 7x-1/4-1/7{2x-(1-x/2)}=4 | | 2.25x+1.97=3.75x-4.03 | | 7x(3x+18)=0 | | x^2-12.69x+40.19=0 | | x^2-12.69x=0 | | 2^x=3.84 | | 450=3*5x | | 8n+5=n | | 2(5n+3)=n | | 1.50(x+4)=33.96 | | 2x(1200-x)=0 | | (8-u)-(5u-1)=0 | | 8x+3+-7=-12 | | 33=(w)(2w+5) | | 3.5x^2-14x-28=0 | | 10d^2+26d+12=0 |